Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dimethylammonium nitrate

Hannes Vitze, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 29 October 2007; accepted 31 October 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (O–N) = 0.003 Å; R factor = 0.036; wR factor = 0.087; data-to-parameter ratio = 8.6.

The title compound, $C_2H_8N^+ \cdot NO_3^-$, is composed of discrete cations and anions which are connected by classical $N - H \cdot \cdot \cdot O$ hydrogen bonds. Geometric parameters are in the usual ranges.

Related literature

For related literature, see: Bieller *et al.* (2005); Trofimenko (1993); Vitze *et al.* (2006); Zhang *et al.* (2004).

Experimental

Crystal data $C_2H_8N^+ \cdot NO_3^ M_r = 108.10$ Orthorhombic, $Pna2_1$ a = 9.9552 (18) Å b = 9.7684 (12) Å c = 5.7191 (7) Å

Data collection

STOE IPDS II two-circlediffractometer Absorption correction: none 4065 measured reflections T = 173 (2) K 0.37 × 0.17 × 0.08 mm

 $V = 556.16 (14) \text{ Å}^3$

Mo $K\alpha$ radiation

 $\mu = 0.12 \text{ mm}^{-1}$

Z = 4

557 independent reflections 492 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.081$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.087$ S = 1.07557 reflections 65 parameters

 $\begin{array}{l} 1 \mbox{ restraint} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.14 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.12 \mbox{ e } \mbox{ Å}^{-3} \end{array}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O3$	0.92	2.38	3.018 (3)	126
$N2 - H2B \cdot \cdot \cdot O1^{i}$	0.92	1.98	2.892 (3)	169
$N2 - H2B \cdot \cdot \cdot O3^{i}$	0.92	2.43	3.035 (3)	123
$N2-H2A\cdots O1^{ii}$	0.92	2.37	2.994 (3)	125
$N2-H2A\cdots O2^{ii}$	0.92	2.25	3.000 (3)	139

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $z + \frac{1}{2}$; (ii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, z.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2464).

References

Bieller, S., Bolte, M., Lerner, H.-W. & Wagner, M. (2005). Inorg. Chem. 44, 9489–9496.Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

Trofimenko, S. (1993). Chem. Rev. 93, 943-980.

Vitze, H., Lerner, H.-W. & Bolte, M. (2006). Acta Cryst. E62, m2299-m2300.

Zhang, F., Bolte, M., Lerner, H.-W. & Wagner, M. (2004). Organometallics, 23, 5075–5080.

supplementary materials

Acta Cryst. (2007). E63, o4621 [doi:10.1107/S1600536807054839]

Dimethylammonium nitrate

H. Vitze, H.-W. Lerner and M. Bolte

Comment

Poly(pyrazol-1-yl)borates ("*scorpionates*") are among the most important ligands in transition metal chemistry and were invented by Trofimenko more than 30 years ago (Trofimenko, 1993). Recently, we have extended our studies to ditopic scorpionates with *meta*- and *para*-phenylene backbones. Our studies have shown that the synthesis of scorpionates can conveniently be achieved by reaction of bis(dimethylamino)arylboranes and pyrazole or pyrazole derivatives in the presence of bases (Bieller *et al.*, 2005; Zhang *et al.*, 2004). In attempting to synthesize a zinc complex with the [C₆F₅Bpz₃] ligand (pz = pyrazolyl) from C₆F₅B(NMe₂)₂ (Me = CH₃) and [Znpz₄(NO₃)₂] (Vitze *et al.*, 2006) we obtained the title compound, H₂NMe₂NO₃, as a by-product. Single crystals of H₂NMe₂NO₃ were obtained from a mixture of tetrahydrofuran/hexane at ambient temperature.

The title compound is composed of discrete cations and anions (Fig. 1) which are connected by classical N—H···O hydrogen bonds. Two of the nitrate O atoms accept two hydrogen bonds, whereas the third one just accepts one (Fig. 2). Geometric parameters are in the usual ranges.

Experimental

A mixture of $C_6F_5B(NMe_2)_2$ (0.266 g) and $[Znpz_4(NO_3)_2]$ (Vitze *et al.*, 2006) in 6 ml tetrahydrofuran and 6 ml NEt₃ was refluxed for 1 h. After removal of the solvent *in vacuo* the residue was extracted with tetrahydrofuran. Layering with hexane led to the deposition of crystals of H₂NMe₂NO₃ at ambient temperature.

Refinement

All H atoms could be located by difference Fourier synthesis. They were refined with fixed individual displacement parameters [$U_{iso}(H) = 1.2 U_{eq}(N)$ or $U_{iso}(H) = 1.5 U_{eq}(C)$] using a riding model with N—H = 0.92Å or C—H = 0.98Å, respectively. In the absence of anomalous scatterers, the Flack (1983) parameter is meaningless and therefore, Friedel pairs had been merged prior to refinement.

Figures

Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level.

Fig. 2. Packing diagram of the title compound with view onto the *ab* plane. Hydrogen bonds are drawn as dashed lines.

Dimethylammonium nitrate

 $C_2H_8N^+ \cdot NO_3^ M_r = 108.10$ Orthorhombic, $Pna2_1$ Hall symbol: P 2c -2n a = 9.9552 (18) Å b = 9.7684 (12) Å c = 5.7191 (7) Å $V = 556.16 (14) \text{ Å}^3$ Z = 4

Data collection

STOE IPDS II two-circle- diffractometer	492 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.081$
Monochromator: graphite	$\theta_{\text{max}} = 25.3^{\circ}$
T = 173(2) K	$\theta_{\min} = 4.1^{\circ}$
ω scans	$h = -11 \rightarrow 10$
Absorption correction: none	$k = -11 \rightarrow 10$
4065 measured reflections	$l = -6 \rightarrow 6$
557 independent reflections	

Refinement

Refinement on F^2	H-atom parameters constrained		
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0532P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$		
$R[F^2 > 2\sigma(F^2)] = 0.036$	$(\Delta/\sigma)_{max} < 0.001$		
$wR(F^2) = 0.087$	$\Delta \rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$		
<i>S</i> = 1.07	$\Delta \rho_{min} = -0.12 \text{ e } \text{\AA}^{-3}$		
557 reflections	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$		
65 parameters	Extinction coefficient: 0.042 (13)		
1 restraint			

 $F_{000} = 232$ $D_x = 1.291 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3599 reflections $\theta = 4.1-25.4^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 173 (2) KPlate, colourless $0.37 \times 0.17 \times 0.08 \text{ mm}$ Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Experimental.;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.4727 (2)	0.2067 (2)	0.4304 (4)	0.0357 (5)
01	0.52001 (19)	0.1106 (2)	0.3073 (4)	0.0427 (6)
O2	0.5451 (2)	0.2631 (2)	0.5812 (4)	0.0460 (6)
O3	0.3538 (2)	0.2435 (2)	0.3993 (5)	0.0614 (8)
C1	0.3170 (4)	0.5648 (3)	0.5141 (6)	0.0487 (8)
H1A	0.2722	0.5897	0.3676	0.073*
H1B	0.3991	0.5133	0.4793	0.073*
H1C	0.3401	0.6481	0.6007	0.073*
N2	0.2255 (2)	0.4789 (2)	0.6577 (4)	0.0348 (6)
H2A	0.2021	0.4022	0.5736	0.042*
H2B	0.1482	0.5274	0.6879	0.042*
C2	0.2866 (3)	0.4355 (3)	0.8836 (5)	0.0452 (7)
H2C	0.2221	0.3794	0.9708	0.068*
H2D	0.3099	0.5166	0.9758	0.068*
H2E	0.3679	0.3819	0.8527	0.068*

Atomic disp	lacement parameter	$rs(A^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0295 (11)	0.0322 (12)	0.0452 (13)	-0.0013 (9)	-0.0008 (12)	-0.0014 (11)
01	0.0356 (11)	0.0484 (13)	0.0440 (10)	0.0081 (9)	0.0035 (9)	-0.0096 (10)
02	0.0388 (11)	0.0438 (12)	0.0556 (14)	-0.0041 (9)	-0.0129 (10)	-0.0129 (10)
O3	0.0350 (12)	0.0566 (15)	0.0927 (19)	0.0132 (9)	-0.0180 (13)	-0.0332 (14)
C1	0.0600 (19)	0.0417 (16)	0.0444 (17)	-0.0017 (15)	0.0152 (15)	-0.0015 (14)
N2	0.0331 (11)	0.0348 (12)	0.0364 (12)	-0.0030 (9)	0.0031 (10)	-0.0093 (10)
C2	0.0510 (17)	0.0467 (17)	0.0379 (16)	-0.0021 (14)	0.0003 (13)	0.0014 (13)

Geometric parameters (Å, °)

N103	1.249 (3)	N2—C2	1.489 (4)
N1	1.252 (3)	N2—H2A	0.9200
N101	1.264 (3)	N2—H2B	0.9200
C1—N2	1.487 (4)	C2—H2C	0.9800
C1—H1A	0.9800	C2—H2D	0.9800
C1—H1B	0.9800	C2—H2E	0.9800
C1—H1C	0.9800		
O3—N1—O2	121.1 (3)	C2—N2—H2A	109.0
03—N1—01	119.2 (2)	C1—N2—H2B	109.0
02—N1—O1	119.7 (2)	C2—N2—H2B	109.0
N2—C1—H1A	109.5	H2A—N2—H2B	107.8
N2—C1—H1B	109.5	N2—C2—H2C	109.5
H1A—C1—H1B	109.5	N2—C2—H2D	109.5
N2—C1—H1C	109.5	H2C—C2—H2D	109.5
H1A—C1—H1C	109.5	N2—C2—H2E	109.5
H1B-C1-H1C	109.5	H2C—C2—H2E	109.5
C1—N2—C2	112.9 (2)	H2D—C2—H2E	109.5
C1—N2—H2A	109.0		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H2A···O3	0.92	2.38	3.018 (3)	126
N2—H2B···O1 ⁱ	0.92	1.98	2.892 (3)	169
N2—H2B···O3 ⁱ	0.92	2.43	3.035 (3)	123
N2—H2A···O1 ⁱⁱ	0.92	2.37	2.994 (3)	125
N2—H2A···O2 ⁱⁱ	0.92	2.25	3.000 (3)	139

Symmetry codes: (i) -x+1/2, y+1/2, z+1/2; (ii) x-1/2, -y+1/2, z.

